Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract. Deposition of sulfuric acid in ice cores is important both for understanding past volcanic activity and for synchronizing ice core timescales. Sulfuric acid has a low eutectic point, so it can potentially exist in liquid at grain boundaries and veins, accelerating chemical diffusion. A high effective diffusivity would allow post-depositional diffusion to obscure the climate history and the peak matching among older portions of ice cores. Here, we use records of sulfate from the European Project of Ice Coring in Antarctica (EPICA) Dome C (EDC) ice core to estimate the effective diffusivity of sulfuric acid in ice. We focus on EDC because multiple glacial–interglacial cycles are preserved, allowing analysis for long timescales and deposition in similar climates. We calculate the mean concentration gradient and the width of prominent volcanic events, and analyze the evolution of each with depth and age. We find the effective diffusivities for interglacial and glacial maximums to be 5±3×10-9 m2 a−1, an order of magnitude lower than a previous estimate derived from the Holocene portion of EDC (Barnes et al., 2003). The effective diffusivity may be even smaller if the bias from artificial smoothing from the sampling is accounted for. Effective diffusivity is not obviously affected by the ice temperature until about −10 ∘C, 3000 m depth, which is also where anomalous sulfate peaks begin to be observed (Traversi et al., 2009). Low effective diffusivity suggests that sulfuric acid is not readily diffusing in liquid-like veins in the upper portions of the Antarctic Ice Sheet and that records may be preserved in deep, old ice if the ice temperature remains well below the pressure melting point.more » « less
- 
            Hercules Dome, Antarctica, has long been identified as a prospective deep ice core site due to the undisturbed internal layering, climatic setting and potential to obtain proxy records from the Last Interglacial (LIG) period when the West Antarctic ice sheet may have collapsed. We performed a geophysical survey using multiple ice-penetrating radar systems to identify potential locations for a deep ice core at Hercules Dome. The surface topography, as revealed with recent satellite observations, is more complex than previously recognized. The most prominent dome, which we term ‘West Dome’, is the most promising region for a deep ice core for the following reasons: (1) bed-conformal radar reflections indicate minimal layer disturbance and extend to within tens of meters of the ice bottom; (2) the bed is likely frozen, as evidenced by both the shape of the measured vertical ice velocity profiles beneath the divide and modeled ice temperature using three remotely sensed estimates of geothermal flux and (3) models of layer thinning have 132 ka old ice at 45–90 m above the bed with an annual layer thickness of ~1 mm, satisfying the resolution and preservation needed for detailed analysis of the LIG period.more » « less
- 
            Abstract. Radio-echo sounding (RES) has revealed an internal architecture within Antarctica’s ice sheets that records their depositional, deformational and melting histories. Crucially, spatially-widespread RES-imaged internal-reflecting horizons, tied to ice-core age-depth profiles, can be treated as isochrones that record the age-depth structure across the Antarctic ice sheets. These enable the reconstruction of past climate and ice-dynamical processes on large scales, which are complementary to but more spatially-extensive than commonly used proxy records across Antarctica. We review progress towards building a pan-Antarctic age-depth model from these data by first introducing the relevant RES datasets that have been acquired across Antarctica over the last six decades (focussing specifically on those that detected internal-reflecting horizons), and outlining the processing steps typically undertaken to visualise, trace and date (by intersection with ice cores, or modelling) the RES-imaged isochrones. We summarise the scientific applications to which Antarctica’s internal architecture has been applied to date and present a pathway to expanding Antarctic radiostratigraphy across the continent to provide a benchmark for a wider range of investigations: (1) Identification of optimal sites for retrieving new ice-core palaeoclimate records targeting different periods; (2) Reconstruction of surface mass balance on millennial or historical timescales; (3) Estimates of basal melting and geothermal heat flux from radiostratigraphy and comprehensively mapping basal-ice units, to complement inferences from other geophysical and geological methods; (4) Advancing knowledge of volcanic activity and fallout across Antarctica; (5) The refinement of numerical models that leverage radiostratigraphy to tune time-varying accumulation, basal melting and ice flow, firstly to reconstruct past behaviour, and then to reduce uncertainties in projecting future ice-sheet behaviour.more » « less
- 
            Abstract All radar power interpretations require a correction for attenuative losses. Moreover, radar attenuation is a proxy for ice-column properties, such as temperature and chemistry. Prior studies use either paired thermodynamic and conductivity models or the radar data themselves to calculate attenuation, but there is no standard method to do so; and, before now, there has been no robust methodological comparison. Here, we develop a framework meant to guide the implementation of empirical attenuation methods based on survey design and regional glaciological conditions. We divide the methods into the three main groups: (1) those that infer attenuation from a single reflector across many traces; (2) those that infer attenuation from multiple reflectors within one trace; and (3) those that infer attenuation by contrasting the measured power from primary and secondary reflections. To assess our framework, we introduce a new ground-based radar survey from South Pole Lake, comparing selected empirical methods to the expected attenuation from a temperature- and chemistry-dependent Arrhenius model. Based on the small surveyed area, lack of a sufficient calibration surface and low reflector relief, the attenuation methods that use multiple reflectors are most suitable at South Pole Lake.more » « less
- 
            Abstract Despite widespread use of radio-echo sounding (RES) in glaciology and broad distribution of processed radar products, the glaciological community has no standard software for processing impulse RES data. Dependable, fast and collection-system/platform-independent processing flows could facilitate comparison between datasets and allow full utilization of large impulse RES data archives and new data. Here, we present ImpDAR, an open-source, cross-platform, impulse radar processor and interpreter, written primarily in Python. The utility of this software lies in its collection of established tools into a single, open-source framework. ImpDAR aims to provide a versatile standard that is accessible to radar-processing novices and useful to specialists. It can read data from common commercial ground-penetrating radars (GPRs) and some custom-built RES systems. It performs all the standard processing steps, including bandpass and horizontal filtering, time correction for antenna spacing, geolocation and migration. After processing data, ImpDAR's interpreter includes several plotting functions, digitization of reflecting horizons, calculation of reflector strength and export of interpreted layers. We demonstrate these capabilities on two datasets: deep (~3000 m depth) data collected with a custom (3 MHz) system in northeast Greenland and shallow (<100 m depth, 500 MHz) data collected with a commercial GPR on South Cascade Glacier in Washington.more » « less
- 
            Abstract Subglacial lakes require a thawed bed either now or in the past; thus, their presence and stability have implications for current and past basal conditions, ice dynamics, and climate. Here, we present the most extensive geophysical exploration to date of a subglacial lake near the geographic South Pole, including radar‐imaged stratigraphy, surface velocities, and englacial vertical velocities. We use a 1.5‐dimensional temperature model, optimized with our geophysical data set and nearby temperature measurements, to estimate past basal‐melt rates. The ice geometry, reflected bed‐echo power, surface and vertical velocities, and temperature model indicate that the ice‐bed interface is regionally thawed, contradicting prior studies. Together with an earlier active‐source seismic study, which showed a 32‐m deep lake underlain by 150 m of sediment, our results suggest that the lake has been thermodynamically stable through at least the last 120,000 years and possibly much longer, making it a promising prospective site for sediment coring.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
